public class CategoricalEntailmentEnsembleClassifier
Public Class CategoricalEntailmentEnsembleClassifier
public ref class CategoricalEntailmentEnsembleClassifier
type CategoricalEntailmentEnsembleClassifier = class end
Categorical entailments for maximal accuracy
Let us assume that items from a given categorical space
must be
classified into a set
of labels.
If
input attributes
are taken into account, and if attribute
has nonempty
finite domain
, then
can be represented as the
Cartesian product
.
A CategoricalEntailment instance,
say , is a
triple
,
where
is a subset of
,
, and
is a truth value.
Given an
instance
, the entailment will classify
as
if and
only if
.
Instantiation and training
Method Train(CategoricalDataSet, IndexCollection, Int32, Int32, Boolean, Boolean) returns a CategoricalEntailmentEnsembleClassifier instance whose ensemble of categorical entailments has been trained by maximizing the accuracy of label assignments to items in a specified data set.
Classifiers can also be instantiated by calling the constructor CategoricalEntailmentEnsembleClassifier(IListCategoricalVariable, CategoricalVariable), and then adding categorical entailments by calling method Add(IListSortedSetDouble, Double, Double), or AddTrained(CategoricalDataSet, IndexCollection, Int32, Int32, Boolean, Boolean).
Empty feature or response domains are not allowed.
A premise can be empty, but in such case it is represented as matching the corresponding feature domain. Equivalently, a premise which is not a nonempty proper subset of the domain is always valid for every item in the feature space.
Classification
Property Entailments gets the list of the categorical entailments in the ensemble of a given classifier.
Given a classifier based on, say, categorical
entailments,
entailment
,
with
,
is said to vote to classify
as
whenever
.
Unlabeled items can thus be
classified via the collection of
Entailments by
performing majority voting procedures, where
the classification
of a
given item
, is defined as
satisfying
and ties are eventually resolved by selecting one of the
maximizing arguments at random.
Method Classify(CategoricalDataSet, IndexCollection) returns such classification for a given collection of items in the feature space.
Advanced scenarios
Internally, the problem of training an ensemble of categorical entailments is solved via a default Cross-Entropy context of type CategoricalEntailmentEnsembleOptimizationContext. For advanced scenarios, in which additional control on the parameters of the underlying algorithm is needed, or a different performance function should be optimized, a specialized context can be instantiated and hence exploited executing method Optimize on a SystemPerformanceOptimizer object.
In the following example, a classifier is trained on a categorical data set. Items are thus classified and the corresponding accuracy computed.
using System;
using System.Collections.Generic;
namespace Novacta.Analytics.CodeExamples
{
public class CategoricalEntailmentEnsembleClassifierExample0
{
public void Main()
{
// Create the feature variables.
CategoricalVariable f0 = new("F-0")
{
{ 0, "A" },
{ 1, "B" },
{ 2, "C" },
{ 3, "D" },
{ 4, "E" }
};
f0.SetAsReadOnly();
CategoricalVariable f1 = new("F-1")
{
{ 0, "I" },
{ 1, "II" },
{ 2, "III" },
{ 3, "IV" }
};
f1.SetAsReadOnly();
// Create the response variable.
CategoricalVariable r = new("R")
{
0,
1,
2
};
r.SetAsReadOnly();
// Create a categorical data set containing
// observations about such variables.
List<CategoricalVariable> variables =
[f0, f1, r];
DoubleMatrix data = DoubleMatrix.Dense(
new double[20, 3] {
{ 0, 0, 0 },
{ 0, 1, 0 },
{ 0, 2, 2 },
{ 0, 3, 2 },
{ 1, 0, 0 },
{ 1, 1, 0 },
{ 1, 2, 2 },
{ 1, 3, 2 },
{ 2, 0, 0 },
{ 2, 1, 0 },
{ 2, 2, 2 },
{ 2, 3, 2 },
{ 3, 0, 1 },
{ 3, 1, 1 },
{ 3, 2, 1 },
{ 3, 3, 1 },
{ 4, 0, 1 },
{ 4, 1, 1 },
{ 4, 2, 1 },
{ 4, 3, 1 } });
CategoricalDataSet dataSet = CategoricalDataSet.FromEncodedData(
variables,
data);
// Train a classifier on the specified data set.
var classifier = CategoricalEntailmentEnsembleClassifier.Train(
dataSet: dataSet,
featureVariableIndexes: IndexCollection.Range(0, 1),
responseVariableIndex: 2,
numberOfTrainedCategoricalEntailments: 3,
allowEntailmentPartialTruthValues: false,
trainSequentially: true);
// Show the ensemble of categorical entailments
// in the trained classifier.
foreach (var entailment in classifier.Entailments)
{
Console.WriteLine(entailment);
}
// Classify the items in the data set.
var predicted = classifier.Classify(dataSet, IndexCollection.Range(0, 1));
// Evaluate and show the accuracy of the predicted classification
// with respect to the actual one.
var actual = dataSet[":", 2];
var accuracy = CategoricalEntailmentEnsembleClassifier.EvaluateAccuracy(
predictedDataSet: predicted,
predictedResponseVariableIndex: 0,
actualDataSet: actual,
actualResponseVariableIndex: 0);
Console.WriteLine("Accuracy: {0}", accuracy);
}
}
}
// Executing method Main() produces the following output:
//
// IF
// F-0 IN { 0 1 2 }
// AND
// F-1 IN { 2 3 }
// THEN
// R IS 2
// WITH TRUTH VALUE 1
//
// IF
// F-0 IN { 3 4 }
// AND
// F-1 IN { 0 1 2 3 }
// THEN
// R IS 1
// WITH TRUTH VALUE 1
//
// IF
// F-0 IN { 0 1 2 }
// AND
// F-1 IN { 0 1 }
// THEN
// R IS 0
// WITH TRUTH VALUE 1
//
// Accuracy: 1
CategoricalEntailmentEnsembleClassifier | Initializes a new instance of the CategoricalEntailmentEnsembleClassifier class whose categorical entailments will classify items from the space defined by the specified feature variables by assigning categories of the given response variable. |
Entailments | Gets the list of categorical entailments contributing to classification. |
FeatureVariables | Gets the categorical variables defining the feature space whose items can be classified by this instance. |
ResponseVariable | Gets the response variable whose categories this instance exploits for classification. |
Add | Adds to this instance a CategoricalEntailment object having the specified premises on feature variables, derived response category, and truth value. |
AddTrained | Adds a number of new categorical entailments by training them together with the entailments currently included in this instance. Training happens on the specified features and response categorical variables in a given data set. |
Classify | Classifies the categorical items in the specified data set. |
Equals | Determines whether the specified object is equal to the current object. (Inherited from Object) |
EvaluateAccuracy | Returns the accuracy of a predicted classification with respect to an actual one. |
Finalize | Allows an object to try to free resources and perform other cleanup operations before it is reclaimed by garbage collection. (Inherited from Object) |
GetHashCode | Serves as the default hash function. (Inherited from Object) |
GetType | Gets the Type of the current instance. (Inherited from Object) |
MemberwiseClone | Creates a shallow copy of the current Object. (Inherited from Object) |
ToString | Returns a string that represents the current object. (Inherited from Object) |
Train | Initializes a new instance of the CategoricalEntailmentEnsembleClassifier class by training an ensemble of categorical entailments on the specified features and response categorical variables in a given data set. |