NonMetricMultidimensionalScaling Class

Represents a nonmetric multidimensional scaling analysis.

Definition

Namespace: Novacta.Analytics
Assembly: Novacta.Analytics (in Novacta.Analytics.dll) Version: 2.1.0+428f3840cfab98dda567bb0ed350b302533e273a
C#
public class NonMetricMultidimensionalScaling
Inheritance
Object    NonMetricMultidimensionalScaling

Remarks

Instantiation

New instances of class NonMetricMultidimensionalScaling can be initialized by calling method Analyze(DoubleMatrix, NullableInt32, Double, Int32, Double), which implements the Kruskal's nonmetric multidimensional scaling algorithm (Kruskal, 1964[1]).

Results

The optimal configuration reached via a nonmetric multidimensional scaling analysis can be inspected through property Configuration.

The stress at the optimal configuration is returned by property Stress.

A boolean value indicating whether the optimization process has converged is given via property HasConverged.

Example

In the following example, a nonmetric multidimensional scaling analysis is performed on a dataset.

C#
using System;

namespace Novacta.Analytics.CodeExamples
{
    public class NonMetricMultidimensionalScalingExample0  
    {
        public void Main()
        {
            // Create a matrix representing a data set about breakfast cereals
            // from Kellogg's manufacturer (adapted
            // from https://lib.stat.cmu.edu/datasets/1993.expo/).
            // It contains the following variables: number of calories,
            // protein, fat, sodium, fiber, carbo, sugars, shelf,
            // potassium, and vitamins of 23 food items.
            var data = DoubleMatrix.Dense(
                numberOfRows: 23,
                numberOfColumns: 10,
                data: [
                     70, 4, 1, 260,  9,  7,   5,  3,   320,  25,
                     50, 4, 0, 140, 14,  8,   0,  3,   330,  25,
                    110, 2, 0, 125,  1, 11,  14,  2,    30,  25,
                    100, 2, 0, 290,  1, 21,   2,  1,    35,  25,
                    110, 1, 0,  90,  1, 13,  12,  2,    20,  25,
                    110, 3, 3, 140,  4, 10,   7,  3,   160,  25,
                    110, 2, 0, 220,  1, 21,   3,  3,    30,  25,
                    110, 2, 1, 125,  1, 11,  13,  2,    30,  25,
                    110, 1, 0, 200,  1, 14,  11,  1,    25,  25,
                    100, 3, 0,   0,  3, 14,   7,  2,   100,  25,
                    120, 3, 0, 240,  5, 14,  12,  3,   190,  25,
                    110, 2, 1, 170,  1, 17,   6,  3,    60, 100,
                    140, 3, 1, 170,  2, 20,   9,  3,    95, 100,
                    160, 3, 2, 150,  3, 17,  13,  3,   160,  25,
                    120, 2, 1, 190,  0, 15,   9,  2,    40,  25,
                    140, 3, 2, 220,  3, 21,   7,  3,   130,  25,
                    90 , 3, 0, 170,  3, 18,   2,  3,    90,  25,
                    100, 3, 0, 320,  1, 20,   3,  3,    45, 100,
                    120, 3, 1, 210,  5, 14,  12,  2,   240,  25,
                     90, 2, 0,   0,  2, 15,   6,  3,   110,  25,
                    110, 2, 0, 290,  0, 22,   3,  1,    35,  25,
                    110, 2, 1,  70,  1,  9,  15,  2,    40,  25,
                    110, 6, 0, 230,  1, 16,   3,  1,    55,  25],
                storageOrder: StorageOrder.RowMajor);

            // Set variable names.
            string[] variables = [
                "Calories",
                "Protein",
                "Fat",
                "Sodium",
                "Fiber",
                "Carbo",
                "Sugars",
                "Shelf",
                "Potassium",
                "Vitamins"];

            for (int j = 0; j < 10; j++)
            {
                data.SetColumnName(j, variables[j]);
            }

            // Create a matrix of dissimilarities among data items.
            var dissimilarities = Distance.Euclidean(data);

            // Define the dimension of the configuration of points in
            // the target space.
            // Passing null, the dimension of the configuration is
            // automatically selected.
            int? configurationDimension = 2;

            // Define the Minkowski metric order.
            double minkowskiMetricOrder = 2.0;

            // Execute the nonmetric MDS analysis.
            var results =
                NonMetricMultidimensionalScaling.Analyze(
                    dissimilarities,
                    configurationDimension,
                    minkowskiMetricOrder,
                    maximumNumberOfIterations: 1000,
                    terminationTolerance: 1e-5);

            // Display the optimal configuration.
            Console.WriteLine("Optimal configuration:");
            Console.WriteLine(results.Configuration);            

            // Display the stress at the optimal configuration.
            Console.WriteLine("Optimal Stress:");
            Console.WriteLine(results.Stress);
            Console.WriteLine();

            // Display a value indicating if the optimization algorithm
            // has converged.
            Console.WriteLine("Optimization convergence:");
            Console.WriteLine(results.HasConverged);
        }
    }
}

// Executing method Main() produces the following output:
// 
// Optimal configuration:
// -1.89597717      0.399918635      
// -1.86551251      -0.596670572     
// 0.656104497      -0.26619972      
// 0.433728616      0.965645243      
// 0.809863242      -0.534262198     
// -0.411350455     -0.345063417     
// 0.504565685      0.437312593      
// 0.656104502      -0.266199726     
// 0.582483485      0.314334039      
// 0.361236467      -1.35424363      
// -0.771641727     0.386965341      
// 0.395305696      -0.0166611174    
// 0.0151118461     -0.0992387674    
// -0.492183217     -0.240436513     
// 0.481770856      0.220395765      
// -0.265464163     0.284648942      
// 0.15438451       -0.0190871902    
// 0.255735523      1.33994932       
// -1.11740079      0.127886757      
// 0.203934174      -1.41007108      
// 0.430348896      0.964276751      
// 0.611922672      -0.771224027     
// 0.266929358      0.478024576      
// 
// 
// Optimal Stress:
// 0.04844361733647352
// 
// Optimization convergence:
// True

Properties

Configuration Gets the optimal configuration of points of this instance.
HasConverged Gets a value indicating whether the optimization process has converged.
Stress Gets the stress at the Configuration of this instance.

Methods

Analyze Executes a nonmetric multidimensional scaling analysis.
EqualsDetermines whether the specified object is equal to the current object.
(Inherited from Object)
FinalizeAllows an object to try to free resources and perform other cleanup operations before it is reclaimed by garbage collection.
(Inherited from Object)
GetHashCodeServes as the default hash function.
(Inherited from Object)
GetTypeGets the Type of the current instance.
(Inherited from Object)
MemberwiseCloneCreates a shallow copy of the current Object.
(Inherited from Object)
ToStringReturns a string that represents the current object.
(Inherited from Object)

Bibliography

[1] Kruskal, J.B., Nonmetric multidimensional scaling: A numerical method, in: Psychometrika, 29, pp. 115-129. (1964), https://doi.org/10.1007/BF02289694

See Also