ClustersExplain Method

Explains existing clusters by selecting a number of features from the specified corresponding data set.

Definition

Namespace: Novacta.Analytics
Assembly: Novacta.Analytics (in Novacta.Analytics.dll) Version: 2.1.0+428f3840cfab98dda567bb0ed350b302533e273a
C#
public static IndexCollection Explain(
	DoubleMatrix data,
	IndexPartition<double> partition,
	int numberOfExplanatoryFeatures
)

Parameters

data  DoubleMatrix
The matrix whose columns contain the features observed at the items under study.
partition  IndexPartitionDouble
A partition of the row indexes valid for data.
numberOfExplanatoryFeatures  Int32
The number of features to be selected.

Return Value

IndexCollection
The collection of column indexes, valid for data, that correspond to the features selected to explain the given partition of row indexes.

Remarks

Method Explain(DoubleMatrix, IndexPartitionDouble, Int32) selects the specified numberOfExplanatoryFeatures from the given data, by minimizing the Davies-Bouldin Index corresponding to the partition of the items under study.

This method uses a default Cross-Entropy context of type CombinationOptimizationContext to identify the optimal features. If different selection criteria need to be applied, or extra control on the parameters of the underlying algorithm is required, a specialized CombinationOptimizationContext can be can be instantiated and hence exploited executing method Optimize on a SystemPerformanceOptimizer object. See the documentation about CombinationOptimizationContext for additional examples.

Example

In the following example, an existing partition of 12 items is explained by selecting 2 features out of the seven ones available in an artificial data set regarding the items under study.

Selecting features from a data set to explain a given partition.
using System;

namespace Novacta.Analytics.CodeExamples
{
    public class ClustersExplainExample0  
    {
        public void Main()
        {
            // Set the number of items and features under study.
            const int numberOfItems = 12;
            int numberOfFeatures = 7;

            // Define a partition that must be explained.
            // Three parts (clusters) are included,
            // containing, respectively, items 0 to 3,
            // 5 to 8, and 9 to 11.
            var partition = IndexPartition.Create(
                new double[numberOfItems]
                    { 0 ,0, 0, 0, 1, 1, 1, 1, 2, 2, 2, 2 });

            // Create a matrix that will represent
            // an artificial data set,
            // having 12 items (rows) and 7 features (columns).
            // This will store the observations which
            // explanation will be based on.
            var data = DoubleMatrix.Dense(
                numberOfRows: numberOfItems,
                numberOfColumns: numberOfFeatures);

            // The first 5 features are built to be almost
            // surely non informative, since they result
            // as samples drawn from a same distribution.
            var g = new GaussianDistribution(mu: 0, sigma: .01);
            for (int j = 0; j < 5; j++)
            {
                data[":", j] = g.Sample(sampleSize: numberOfItems);
            }

            // Features 5 to 6 are instead built to be informative,
            // since they are sampled from different distributions
            // while filling rows whose indexes are in different parts
            // of the partition to be explained.
            var partIdentifiers = partition.Identifiers;
            double mu = 1.0;
            for (int i = 0; i < partIdentifiers.Count; i++)
            {
                var part = partition[partIdentifiers[i]];
                int partSize = part.Count;
                g.Mu = mu;
                data[part, 5] = g.Sample(sampleSize: partSize);
                mu += 2.0;
                g.Mu = mu;
                data[part, 6] = g.Sample(sampleSize: partSize);
                mu += 2.0;
            }

            Console.WriteLine("The data set:");
            Console.WriteLine(data);

            // Define how many features must be selected
            // for explanation.
            int numberOfExplanatoryFeatures = 2;

            // Select the best features.
            IndexCollection optimalExplanatoryFeatureIndexes =
                Clusters.Explain(
                    data,
                    partition,
                    numberOfExplanatoryFeatures);

            // Show the results.
            Console.WriteLine();
            Console.WriteLine(
                "The {0} features best explaining the given partition have column indexes:",
                numberOfExplanatoryFeatures);
            Console.WriteLine(optimalExplanatoryFeatureIndexes);

            Console.WriteLine();
            Console.WriteLine("The Davies-Bouldin Index for the selected features:");
            var dbi = IndexPartition.DaviesBouldinIndex(
                data[":", optimalExplanatoryFeatureIndexes],
                partition);
            Console.WriteLine(dbi);
        }
    }
}

// Executing method Main() produces the following output:
// 
// The data set:
// 0.00443412894    0.00269053161    0.00413587909    -0.00765022956   -0.0051623096    1.00663787       3.01053155       
// -0.0020667716    0.0208840726     -0.00323082939   -0.00939014629   0.00144991289    0.999318094      3.01264231       
// 0.0115714824     0.00980880506    0.0049017337     0.0032788575     0.0157818958     0.990821676      3.01207396       
// -0.0156854206    -0.00757566325   -0.00972832587   -0.00217925896   0.0107421303     0.992541729      2.99695621       
// 0.00220674309    -0.00321077807   -0.00611898588   0.00720305795    0.0128767272     4.99440474       6.99892958       
// -0.00637438186   0.0050524291     -0.00409270388   0.00210944391    -0.0152463979    4.9974367        6.99460151       
// -0.00662648189   -0.0149292848    0.00236975764    0.0103282088     -0.0108846478    4.99249371       6.98860335       
// -0.0219354055    0.0122820889     0.0109569101     -0.0108910035    0.00275269082    5.02268395       6.99732006       
// -0.00172760644   0.000890969086   -0.0121749938    -0.0060896535    -0.0125774475    9.00956698       10.9938497       
// 0.0157657881     0.0084084921     0.00295384059    -0.00358519595   0.00447359708    8.98856241       11.0013196       
// 0.0129253424     -0.000948574239  0.00235032211    -0.0135124599    -0.0233090879    9.00738398       10.9891406       
// -0.0084813634    -0.00459883432   -0.0148632861    0.0223964957     -0.00259506386   9.00721897       11.005672        
// 
// 
// 
// The 2 features best explaining the given partition have column indexes:
// 5, 6
// 
// The Davies-Bouldin Index for the selected features:
// 0.003700083159450854

Exceptions

ArgumentNullExceptiondata is null.
-or-
partition is null.
ArgumentOutOfRangeExceptionnumberOfExplanatoryFeatures is not positive.
ArgumentExceptionnumberOfExplanatoryFeatures is not less than the number of columns in data.
-or-
A part in partition contains a position which is not valid as a row index of data.

See Also