
public void InPlaceTranspose()Public Sub InPlaceTransposepublic:
void InPlaceTranspose()member InPlaceTranspose : unit -> unit 
             Let  be a matrix, and consider its generic entry
             
             where  and  
             
 are the 
             number of rows and columns of 
, respectively.
             
            The transpose of  is the matrix 
            having 
 rows and 
            
 columns, whose generic
            entry is:
            
The method transforms this instance in its transpose.
In the following example, a matrix is transposed.
using System;
namespace Novacta.Analytics.CodeExamples
{
    public class InPlaceTransposeExample0  
    {
        public void Main()
        {
            // Create a matrix.
            var data = new double[20] {
                1, 8, -3,  6, -2,
                2, 2,  2,  0,  7,
               -3, 9,  3,  2,  9,
                5, 2, -5, -1, -4
            };
            var matrix = DoubleMatrix.Dense(4, 5, data, StorageOrder.RowMajor);
            Console.WriteLine("Initial data matrix:");
            Console.WriteLine(matrix);
            // Transpose the matrix.
            matrix.InPlaceTranspose();
            Console.WriteLine();
            Console.WriteLine("Transposed data matrix:");
            Console.WriteLine(matrix);
        }
    }
}
// Executing method Main() produces the following output:
// 
// Initial data matrix:
// 1                8                -3               6                -2               
// 2                2                2                0                7                
// -3               9                3                2                9                
// 5                2                -5               -1               -4               
// 
// 
// 
// Transposed data matrix:
// 1                2                -3               5                
// 8                2                9                2                
// -3               2                3                -5               
// 6                0                2                -1               
// -2               7                9                -4               
// 
//