public ComplexMatrix Vec()
Public Function Vec As ComplexMatrix
public:
ComplexMatrix^ Vec()
member Vec : unit -> ComplexMatrix
Let be a matrix, and consider its generic entry
where and
are the
number of rows and columns of
, respectively.
A linear index completely
identifies an entry,
assuming that entries are linearly ordered following the
ColumnMajor
data order. This means that entry has linear
index equal to
, and matrix entries can be enumerated as
follows:
where is the Count of the matrix.
This method, when called on a ComplexMatrix instance
representing matrix , returns a new
ComplexMatrix instance that
represents a column vector, say
,
such that:
In the following example, a matrix is vectorized.
using System;
using System.Numerics;
namespace Novacta.Analytics.CodeExamples
{
public class ComplexVecExample0
{
public void Main()
{
// Create a matrix.
var data = new Complex[8] {
new(1, -1), new(5, -5),
new(2, -2), new(6, -6),
new(3, -3), new(7, -7),
new(4, -4), new(8, -8)
};
var matrix = ComplexMatrix.Dense(4, 2, data, StorageOrder.RowMajor);
Console.WriteLine("Initial data matrix:");
Console.WriteLine(matrix);
// Get the vectorization of the data matrix.
var vectorized = matrix.Vec();
Console.WriteLine();
Console.WriteLine("Vectorized data matrix:");
Console.WriteLine(vectorized);
// Entries can also be vectorized using a read-only wrapper of the matrix.
ReadOnlyComplexMatrix readOnlyMatrix = matrix.AsReadOnly();
Console.WriteLine();
Console.WriteLine("Vectorized read-only data matrix :");
Console.WriteLine(readOnlyMatrix.Vec());
}
}
}
// Executing method Main() produces the following output:
//
// Initial data matrix:
// ( 1, -1) ( 5, -5)
// ( 2, -2) ( 6, -6)
// ( 3, -3) ( 7, -7)
// ( 4, -4) ( 8, -8)
//
//
//
// Vectorized data matrix:
// ( 1, -1)
// ( 2, -2)
// ( 3, -3)
// ( 4, -4)
// ( 5, -5)
// ( 6, -6)
// ( 7, -7)
// ( 8, -8)
//
//
//
// Vectorized read-only data matrix :
// ( 1, -1)
// ( 2, -2)
// ( 3, -3)
// ( 4, -4)
// ( 5, -5)
// ( 6, -6)
// ( 7, -7)
// ( 8, -8)
//
//