public ComplexMatrix Vec(
IndexCollection linearIndexes
)
Public Function Vec (
linearIndexes As IndexCollection
) As ComplexMatrix
public:
ComplexMatrix^ Vec(
IndexCollection^ linearIndexes
)
member Vec :
linearIndexes : IndexCollection -> ComplexMatrix
Let be a matrix, and consider its generic entry
where and
are the
number of rows and columns of
, respectively.
A linear index completely
identifies an entry,
assuming that entries are linearly ordered following the
ColumnMajor
data order. This means that entry has linear
index equal to
, and matrix entries can be enumerated as
follows:
where is the Count of the matrix.
Let the collection of
indexes represented by linearIndexes.
This method, when called on a ComplexMatrix instance
representing matrix
, returns a new
ComplexMatrix instance that
represents a column vector, say
,
such that:
In the following example, some matrix entries are vectorized.
using System;
using System.Numerics;
namespace Novacta.Analytics.CodeExamples
{
public class ComplexVecExample1
{
public void Main()
{
// Create a matrix.
var data = new Complex[4] {
new(1, -1), new(5, -5),
new(2, -2), new(6, -6)
};
var matrix = ComplexMatrix.Dense(2, 2, data, StorageOrder.RowMajor);
Console.WriteLine("Initial data matrix:");
Console.WriteLine(matrix);
// Get the linear indexes of elements on
// the main diagonal.
var mainDiagonalIndexes = IndexCollection.Sequence(0, 3, 3);
// Get the vectorization of the matrix main diagonal.
var mainDiagonal = matrix.Vec(mainDiagonalIndexes);
Console.WriteLine();
Console.WriteLine("Vectorized main diagonal:");
Console.WriteLine(mainDiagonal);
// Entries can also be vectorized using a read-only wrapper of the matrix.
ReadOnlyComplexMatrix readOnlyMatrix = matrix.AsReadOnly();
Console.WriteLine();
Console.WriteLine("Vectorized main diagonal of a read-only data matrix:");
Console.WriteLine(readOnlyMatrix.Vec(mainDiagonalIndexes));
}
}
}
// Executing method Main() produces the following output:
//
// Initial data matrix:
// ( 1, -1) ( 5, -5)
// ( 2, -2) ( 6, -6)
//
//
//
// Vectorized main diagonal:
// ( 1, -1)
// ( 6, -6)
//
//
//
// Vectorized main diagonal of a read-only data matrix:
// ( 1, -1)
// ( 6, -6)
//
//
ArgumentNullException | linearIndexes is null. |
ArgumentOutOfRangeException | linearIndexes contains an index which is greater than or equal to the Count of this instance. |