ClassicalMultidimensionalScaling Class

Represents a classical multidimensional scaling analysis.

Definition

Namespace: Novacta.Analytics
Assembly: Novacta.Analytics (in Novacta.Analytics.dll) Version: 2.1.0+428f3840cfab98dda567bb0ed350b302533e273a
C#
public class ClassicalMultidimensionalScaling
Inheritance
Object    ClassicalMultidimensionalScaling

Remarks

Instantiation

New instances of class ClassicalMultidimensionalScaling can be initialized by calling method Analyze(DoubleMatrix, NullableInt32), which implements the classical multidimensional scaling algorithm.

Given a matrix of proximities, say LaTeX equation, let LaTeX equation be the matrix of its squared elements, and define the transformed matrix of proximities as

LaTeX equation

where LaTeX equation is the centering matrix.

Let LaTeX equation be the number of positive eigenvalues of matrix LaTeX equation. If the configuration dimension is not specified to method Analyze(DoubleMatrix, NullableInt32), it is set equal to LaTeX equation if LaTeX equation; otherwise, an exception is thrown.

If the configuration dimension is specified to method Analyze(DoubleMatrix, NullableInt32), then it must be less than or equal to LaTeX equation; otherwise, an exception is thrown.

Results

Let LaTeX equation be the eigenvalues of LaTeX equation in decreasing order, and let LaTeX equation be the corresponding eigenvectors.

If the dimension is equal to LaTeX equation, then the configuration is given by matrix:

LaTeX equation

which can be inspected through property Configuration.

Goodness of fit

The goodness of fit of such configuration is given by the formula

LaTeX equation

and is accessible through property GoodnessOfFit.

Example

In the following example, a classical multidimensional scaling analysis is performed on a matrix of proximities.

C#
using System;

namespace Novacta.Analytics.CodeExamples
{
    public class ClassicalMultidimensionalScalingExample0  
    {
        public void Main()
        {
            // Create a matrix of proximities among cities.
            int numberOfCities = 10;

            string[] cities = [
                "Atlanta",
                "Chicago",
                "Denver",
                "Houston",
                "Los Angeles",
                "Miami",
                "New York",
                "San Francisco",
                "Seattle",
                "Washington DC"];

            var proximities = DoubleMatrix.Dense(
                numberOfRows: numberOfCities,
                numberOfColumns: numberOfCities,
                data: [
                      0,  587, 1212,  701, 1936,  604,  748, 2139, 2182,  543,
                    587,    0,  920,  940, 1745, 1188,  713, 1858, 1737,  597,
                   1212,  920,    0,  879,  831, 1726, 1631,  949, 1021, 1494,
                    701,  940,  879,    0, 1374,  968, 1420, 1645, 1891, 1220,
                   1936, 1745,  831, 1374,    0, 2339, 2451,  347,  959, 2300,
                    604, 1188, 1726,  968, 2339,    0, 1092, 2594, 2734,  923,
                    748,  713, 1631, 1420, 2451, 1092,    0, 2571, 2408,  205,
                   2139, 1858,  949, 1645,  347, 2594, 2571,    0,  678, 2442,
                   2182, 1737, 1021, 1891,  959, 2734, 2408,  678,    0, 2329,
                    543,  597, 1494, 1220, 2300,  923,  205, 2442, 2329,    0],
                storageOrder: StorageOrder.RowMajor);

            // Add city names to the matrix of proximities.
            for (int i = 0; i < numberOfCities; i++)
            {
                var city = cities[i];
                proximities.SetRowName(i, city);
                proximities.SetColumnName(i, city);
            }

            // Define the dimension of the configuration of points in the target space.
            // Passing null, the dimension of the configuration is automatically selected.
            int? configurationDimension = null;

            // Execute a classical MDS analysis.
            var metricMds =
                ClassicalMultidimensionalScaling.Analyze(
                    proximities,
                    configurationDimension);

            // Display the configuration.
            Console.WriteLine("City coordinates:");
            Console.WriteLine(metricMds.Configuration);

            // Display the goodness of fit.
            Console.WriteLine("Goodness of fit:");
            Console.WriteLine(metricMds.GoodnessOfFit);
        }
    }
}

// Executing method Main() produces the following output:
// 
// City coordinates:
// [Atlanta]        -718.759381      142.994269       35.102499        -1.22496264      7.40947762       -1.5046461       6.58357404e-06   
// [Chicago]        -382.055766      -340.839623      29.6022277       -8.23788477      12.0242975       2.33830156       6.58357404e-06   
// [Denver]         481.602336       -25.2850406      53.3938021       1.33927902       -15.6658897      0.952696317      6.58357404e-06   
// [Houston]        -161.466258      572.769911       1.45257147       -1.76231781      0.671865645      -2.70076208      6.58357404e-06   
// [Los Angeles]    1203.73802       390.100291       -18.6350654      14.9748641       3.16920061       1.65614881       6.58357404e-06   
// [Miami]          -1133.52708      581.907309       -32.2688418      -2.37568536      -2.97185365      2.04718777       6.58357404e-06   
// [New York]       -1072.23569      -519.02423       -34.3418782      -14.2538571      -6.44732888      -0.270908782     6.58357404e-06   
// [San Francisco]  1420.60332       112.589202       -7.75475501      -18.120276       0.805412307      -0.869519732     6.58357404e-06   
// [Seattle]        1341.72248       -579.739278      -23.6507873      5.96145265       1.4286322        -0.614379418     6.58357404e-06   
// [Washington DC]  -979.621992      -335.47281       -2.89977264      23.6993879       -0.423813627     -1.03411834      6.58357404e-06   
// 
// 
// Goodness of fit:
// 0.9963038236716906

Properties

Configuration Gets the configuration of points in the target space.
GoodnessOfFit Gets the goodness of fit at the Configuration.

Methods

Analyze Executes a metric multidimensional scaling analysis.
EqualsDetermines whether the specified object is equal to the current object.
(Inherited from Object)
FinalizeAllows an object to try to free resources and perform other cleanup operations before it is reclaimed by garbage collection.
(Inherited from Object)
GetHashCodeServes as the default hash function.
(Inherited from Object)
GetTypeGets the Type of the current instance.
(Inherited from Object)
MemberwiseCloneCreates a shallow copy of the current Object.
(Inherited from Object)
ToStringReturns a string that represents the current object.
(Inherited from Object)

See Also